2.2.5 BACK LIGHT

Press " " button, the back light will light.

3. HOW TO USE THE MULTIMETER

PRELIMINARY NOTE

- 1. If the battery is weak. a "邑" sign will appear on display. The battery should be replaced
- 2. The FUNCTION switch should be set to the range to be used before operation.

3.1 Resistance Measurement

- (1) Connect the BLACK test lead to the "COM" jack and the RED test lead to the " Ω " jack .
- (2) Set the FUNCTION switch to "OHM" range to be used
- (3) Connect the test leads across the resistance under measurement.

Note:

- 1. If the resistance value being measured exceeds the maximum value of the range selected, an over-range indication will be displayed ("1 or -1"). Select a higher range .For resistance of approximately 1 Megohm and alove . the meter may take a few seconds to stabilize . This is normal for high resistance readings.
- 2. when the input is not connected, input is open circuit .the sign "1 or -1" will be displayed for the overrange condition. when checking in-circuit resistance, be sure the circuit under test has all power removed and that all capacitors are fully discharged.

3.2 Capacitance Measurement

- (1) Set the FUNCTION switch to "C" to be used.
- (2) Insert the capacitor under measurement into the two jacks "LG-" and "LC+ at the left on the front panel.

Note:

- 1. Capacitors should be discharged before being inserted into the test-jacks.
- 2. When testing large capacitance, note that there will be a certain time lag before the final indication.
- 3. Do not connect an external voltage or charged capacitor (especially larger capacitors) to measuring terminals.

3.3 Inductance Measurement

- (1) Set the FUNCTION switch to "L" to be used.
- (2) Insert the inductor under measurement into the two jacks "LC-" and "LC+ at the left on the front panel.

3.4 Transistor hFE Test

- (1) Set the FUNCTION switch the "hFE" range.
- (2) Determine whether the transistor is NPN or PNP and locate the Emitter. Base and collector leads. Insert the leads into the proper holes in the socker on the front panel.
- 3) The display will read the approximated hFE value at the test condition Base current 10uA, Vce 3V.

4. MAINTENANCE

- (1) The multimeter is a precision electronic device. Do not tamper with the circuity . to avoid damage :
- A: Never connect a source of voltage under the condition of resistance measurement.
- B: Never operate the meter unless the cover is in place and fully closed.
- C: Battery replacement should be done after the test

- leads have been disconnected and POWER IS OFF.
- (2) turn off the power if the meter is not in use, removed the battery if the meter will be free for long period.
- (3) If a sign " 邑 " appear on the display, open the compartment cover, remove the spent battery and replace it with a battery of the same type.
- (4) Contact with the maintenance service center of our company if you have trouble.
- (5) Please take out the battery when not using for a long time.

Above picture and content just for your reference. Please be subject to the actual products if anything different or updated. Please pardon for not informing in advance.

3 1/2 DIGITAL LCR MULTIMETER OPERATION MANUAL

1. INTRODUCTION

This instrument is a compact , battery operated , handheld , with safety protector , streamline 3 1/2 digital LCR multimeter designed for use by technicians , servicemen , students , and hobbyists who required an instrument that is accurate , reliable , and always ready for use. The Dual-slope-A/D converter uses C-MOS technology for auto-zeroing , polarity selection and over-range indication. Full overload protection is provided. It is powered by a standard 9V transistor radio type battery .please read this manual that describes various useful message before using the multimeter.

2. Panel Layout

- 1) LCD Display: 31/2 digits, character 16MM high
- 2 POWER Switch
- 3 Back Light Button Switch: Press this button to switch on back light If the dark circumstance light makes the reading difficulty when measuring, the light will be automatically turned off in 5 seconds. Press again to switch it on again. If the battery is in weak power, the light will be dimmed
- 4 Rotary Switch: use this switch to select functions and ranges
- 5 Ω Input Jack、LCX Input Jack、COM/LCX Input Jack

2. SPECIFICATION

2.1 GENERAL CHARACTERISTICS

- 2.1.1 3 1/2 digit big LCD max. Indication 1999.
- 2.1.2 Auto-Zero & Auto-Polarity .
- 2.1.3 Over-range: indication of "1" or "-1".
- 2.1.4 Low battery indication: "閚"
- 2.1.5 Power supply: 9V Zinc-carbon battery.
- 2.1.6 Safety standards:

The meter is up to the standards of IEC1010 Double Insulation , Pollution Degree 2 ,overvoltage Category III.

2.1.7 Temperature for guaranteed accuracy: $23^{\circ}\pm5^{\circ}$

2.1.8 Temperature range:

Operating :0°C to 40 °C Storage : -20°C to 60 °C

2.1.9 Humidity range:

Operating: max 75%RH Storage: max 80%RH

2.1.10 Size: 143x75x32mm

2.1.11 Weight: Approx 200g (including battery).

2.1.12 Accessories:

operation manual

1 piece

test leads

1 pair

packing box

1 piece

2.2 MEASUREMENT SPECIFICATION

Environment:

Temperature : 23°C \pm 5°C relative humidity : max .75%

2.2.1 Resistance

Range	Accuracy	Resolution
20 Ω	\pm (1.2% of rdg + 30dgts)	0.01 Ω
200 Ω	\pm (1.0% of rdg +20dgts)	0.1Ω
2k Ω		1 Ω
20k Ω		10 Ω
200k Ω		100 Ω
2M Ω	\pm (2.0% of rdg + 20dgts)	1kΩ
20M Ω	$\pm (2.0\% \text{ of rdg + 25dgts})$	
200M Ω	\pm (5.0% of rdg + 25dgts)	100kΩ
2000M Ω	\pm (10.0% of rdg + 35dgts)	1 M Ω

Overload protection: 250V DC/250Vrms AC for all range.

2.2.2 Capacitance

Range	Accuracy	Resolution
2000pF	\pm (2.5% of rdg + 30dgts)	1pF
20nF	\pm (2.5% of rdg + 25dgts)	10pF
200nF	\pm (2.5% of rdg +30dgts)	100pF
2 μ F	± /2.5% of rdg ± 20dgto)	1nF
20 µ F	\pm (2.5% of rdg + 30dgts)	10nF
200 µ F	\pm (7.0% of rdg + 50dgts)	0.1 µ F

2.2.3 Inductance

Range	Frequency	Accuracy	Resolution		
20mH	100Hz	\pm (2.5% of rdg + 25dgts)	0.01mH		
200mH	100Hz		0.1mH		
2H	100Hz		1mH		
20H	100Hz		10mḤ		

2.2.4 Transistor hFE test

Range	Description	Test Condition
hFE	Display read approx .hFE value (0~1000) of transistor under test (NPN and PNP Type)	Bast Current approx 10 μ A Vce approx 3V